Composite Finite Elements for 3D Elasticity with Discontinuous Coefficients
نویسندگان
چکیده
For the numerical simulation in continuum mechanics the Composite Finite Element (CFE) method allows an effective treatment of problems where material parameters are discontinuous across geometrically complicated interfaces. Instead of complicated and computationally expensive tetrahedral meshing, specialized CFE basis functions are constructed on a uniform hexahedral grid. This is a convenient approach in practice because frequently in biomechanics geometric interfaces are described via 3D image data given as voxel data on a regular grid. Then, for a particular coupling condition that depends on an underlying physical conservation law and the local geometry of the interface, one constructs CFE basis functions that are capable of representing functions satisfying this coupling condition. In this paper we present in detail this construction for heat conduction and linear elasticity as scalar and vector-valued model problems. Furthermore, we show first numerical results.
منابع مشابه
Mechanical Buckling Analysis of Composite Annular Sector Plate with Bean-Shaped Cut-Out using Three Dimensional Finite Element Method
In this paper, mechanical buckling analysis of composite annular sector plates with bean shape cut out is studied. Composite material sector plate made of Glass-Epoxy and Graphite-Epoxy with eight layers with same thickness but different fiber angles for each layer. Mechanical loading to form of uniform pressure loading in radial, environmental and biaxial directions is assumed. The method used...
متن کاملModified Fixed Grid Finite Element Method to Solve 3D Elasticity Problems of Functionally Graded Materials
In the present paper, applicability of the modified fixed grid finite element method in solution of three dimensional elasticity problems of functionally graded materials is investigated. In the non-boundary-fitted meshes, the elements are not conforming to the domain boundaries and the boundary nodes which are used in the traditional finite element method for the application of boundary condit...
متن کاملA New Numerical Procedure for Determination of Effective Elastic Constants in Unidirectional Composite Plates
In this paper a composite plate with similar unidirectional fibers is considered. Assuming orthotropic structure, theory of elasticity is used for investigating the stress concentration. Also, complex variable functions are utilized for solving the plane stress problems. Then the effective characteristics of this plate are studied numerically by using ANSYS software. In this research a volume e...
متن کاملTwo-dimensional Axisymmetric Electromechanical Response of Piezoelectric, Functionally Graded and Layered Composite Cylinders
A mixed semi-analytical cum numerical approach is presented in this paper which accounts for the coupled mechanical and electrical response of piezoelectric, functionally graded (FG) and layered composite hollow circular cylinders of finite length. Under axisymmetric mechanical and electrical loadings, the three-dimensional problem (3D) gets reduced to a two-dimensional (2D) plane strain proble...
متن کاملLower Order Finite Element Approximations of Symmetric Tensors on Simplicial Grids in R
In this paper, we construct, in a unified fashion, lower order finite element subspaces of spaces of symmetric tensors with square-integrable divergence on a domain in any dimension. These subspaces are essentially the symmetric H(div) − Pk (1 ≤ k ≤ n) tensor spaces, enriched, for each n − 1 dimensional simplex, by (n+1)n 2 H(div) − Pn+1 bubble functions when 1 ≤ k ≤ n − 1, and by (n−1)n 2 H(di...
متن کامل